Treffer: sck-at-ucy/kbeta-transformer2d: Title: v1.0.0 – First public release (w/ Zenodo trigger)

Title:
sck-at-ucy/kbeta-transformer2d: Title: v1.0.0 – First public release (w/ Zenodo trigger)
Authors:
Publisher Information:
Zenodo
Publication Year:
2025
Collection:
Zenodo
Document Type:
E-Ressource software
Language:
unknown
DOI:
10.5281/zenodo.16911539
Rights:
Accession Number:
edsbas.C0E58CFF
Database:
BASE

Weitere Informationen

🚀 Release v1.0.0 – kbeta-transformer2d Companion code for the paper "Kourkoutas-β: A Sunspike-Driven Adam Optimizer with Desert Flair" (arXiv:2508.12996). This release delivers the full 2-D Heat-Diffusion Transformer workload used in the experiments, packaged for easy installation via PyPI and reproducibility in research. Note: This release is identical to v1.0.0. Published only to trigger Zenodo archiving and DOI minting. ✨ Highlights End-to-end Transformer benchmark for spatial–temporal diffusion problems. Tight integration with Kourkoutas-β (see kbeta): Drop-in optimizer swap with --optimizer=kourkoutas. Sun-spike / β₂ diagnostics enabled via CLI flags (--collect_spikes). Dual masking modes: autoregressive (causal) and full-context (block). RoPE positional encoding option for better long-horizon extrapolation. Quantization-ready: all dense/conv projections use mlx.nn.quantize_lin. Lightweight footprint: Paper config ≈ 32 M parameters (24 layers, 16 heads). Runs comfortably on a single Apple Silicon GPU (Mac Studio). Configurable learning-rate schedules: Explicit step schedule via learning_rate_schedule (used in the paper). Fallback to cosine schedule controlled by init_lr, target_lr, and ramp_steps. 📦 Installation Option 1 — PyPI wheels (end-users): pip install kbeta-transformer2d Dev extras: pip install "kbeta-transformer2d[dev]" Exact paper reproducibility (pinned deps, MLX 0.26.3): pip install "kbeta-transformer2d[repro]" Option 2 — Clone for research/contribution: git clone https://github.com/sck-at-ucy/kbeta-transformer2d.git cd kbeta-transformer2d python -m venv .venv && source .venv/bin/activate pip install -e ".[dev]" 🛠 Quick start Run smoke-tests: pytest -q Train with packaged defaults: python -m kbeta_transformer2d.demo_heat2d heat2d.yml --epochs=5 --optimizer=adam95 Use explicit output directory: python -m kbeta_transformer2d.demo_heat2d heat2d.yml --epochs=5 --optimizer=kourkoutas --override storage.outdir="./OUTPUTS/run_demo" 📂 Project layout kbeta-transformer2d ├── ...