Result: Parallel Solver for the Poisson Equation on a Hierarchy of Superimposed Meshes, under a Python Framework ; Solveur Parallèle pour l'Equation de Poisson sur Mailles Superposées et Hiérarchiques, dans le Cadre du Langage Python
Further Information
Adaptive discretizations are important in compressible/incompressible flow problems since it is often necessary to resolve details on multiple levels, allowing large regions of space to be modeled using a reduced number of degrees of freedom (reducing the computational time). There are a wide variety of methods for adaptively discretizing space, but Cartesian grids have often outperformed them even at high resolutions due to their simple and accurate numerical stencils and their superior parallel performances. Such performance and simplicity are in general obtained applying a finite-difference scheme for the resolution of the problems involved, but this discretization approach does not present, by contrast, an easy adapting path. In a finite-volume scheme, instead, we can incorporate different types of grids, more suitable for adaptive refinements, increasing the complexity on the stencils and getting a greater flexibility. The Laplace operator is an essential building block of the Navier-Stokes equations, a model that governs fluid flows, but it occurs also in differential equations that describe many other physical phenomena, such as electric and gravitational potentials, and quantum mechanics. So, it is a very important differential operator, and all the studies carried out on it, prove its relevance. In this work will be presented 2D finite-difference and finite-volume approaches to solve the Laplacian operator, applying patches of overlapping grids where a more fined level is needed, leaving coarsermeshes in the rest of the computational domain. These overlapping grids will have generic quadrilateral shapes. Specifically, the topics covered will be: 1) introduction to the finite difference method, finite volume method, domain partitioning, solution approximation; 2)overview of different types of meshes to represent in a discrete way the geometry involved in a problem, with a focus on the octree data structure, presenting PABLO and PABLitO. The first one is an external library used to manage each single ...