Treffer: Tutorial: Using QOD/OII Metrics in Python

Title:
Tutorial: Using QOD/OII Metrics in Python
Publisher Information:
Zenodo
Publication Year:
2025
Collection:
Zenodo
Document Type:
Fachzeitschrift text
Language:
English
DOI:
10.5281/zenodo.17100822
Rights:
Creative Commons Attribution 4.0 International ; cc-by-4.0 ; https://creativecommons.org/licenses/by/4.0/legalcode ; Copyright © 2025 Kwan Hong Tan
Accession Number:
edsbas.890C3069
Database:
BASE

Weitere Informationen

This tutorial shows how to compute Fluctuation Intensity (FI), Correlation Dynamics (CD), Phase Transition Probability (PTP), Emergence Potential (EP), and Ethical Responsivity (ER) using the QOD/OII framework. The code is based on three Python modules: ontological_metrics.py – core definitions of FI, CD, PTP, EP, ER financial_analysis.py – examples on financial time series (e.g. SPY, QQQ) comprehensive_analysis.py – end-to-end analysis pipeline Related Research: Tan, K. H. (2025). "Empirical Signatures of Ontological Instability: Quantifying Fluctuational Epistemology in Complex Systems." ResearchGate. https://www.researchgate.net/publication/394281660_Empirical_Signatures_of_Ontological_Instability_Quantifying_Fluctuational_Epistemology_in_Complex_Systems