Treffer: ÐÑенка каÑеÑÑва пÑогнозиÑÐ¾Ð²Ð°Ð½Ð¸Ñ Ñ Ð°ÑакÑеÑиÑÑик двÑмеÑнÑÑ ÑеÑений глÑбокими ÑвеÑÑоÑнÑми нейÑоннÑми ÑеÑÑми: вÑпÑÑÐºÐ½Ð°Ñ ÐºÐ²Ð°Ð»Ð¸ÑикаÑÐ¸Ð¾Ð½Ð½Ð°Ñ ÑабоÑа бакалавÑа
Weitere Informationen
ÐÐ°Ð½Ð½Ð°Ñ ÑабоÑа поÑвÑÑена иÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ñ Ð¸ ÑазÑабоÑке меÑодик и изÑÑÐµÐ½Ð¸Ñ Ð²Ð¾Ð·Ð¼Ð¾Ð¶Ð½Ð¾ÑÑей и ÑÑÑекÑивноÑÑи пÑÐ¸Ð¼ÐµÐ½ÐµÐ½Ð¸Ñ Ð³Ð»ÑбокиÑ
ÑвÑÑÑоÑнÑÑ
нейÑоннÑÑ
ÑеÑей Ð´Ð»Ñ Ð¿ÑогнозиÑÐ¾Ð²Ð°Ð½Ð¸Ñ Ñ
аÑакÑеÑиÑÑик двÑмеÑнÑÑ
ÑÑаÑионаÑнÑÑ
ламинаÑнÑÑ
ÑеÑений. ÐадаÑи, коÑоÑÑе ÑеÑалиÑÑ Ð² Ñ
оде иÑÑледованиÑ: 1. ÐÑоÑабоÑка лиÑеÑаÑÑÑнÑÑ
иÑÑоÑников, оÑвеÑаÑÑиÑ
вопÑоÑÑ Ð¿ÑакÑиÑеÑкого пÑÐ¸Ð¼ÐµÐ½ÐµÐ½Ð¸Ñ ÑвÑÑÑоÑнÑÑ
иÑкÑÑÑÑвеннÑÑ
нейÑоннÑÑ
ÑеÑей к задаÑам из облаÑÑи меÑ
аники жидкоÑÑи и газа, в Ñом ÑиÑле базиÑÑÑÑиÑ
ÑÑ Ð½Ð° иÑполÑзовании авÑокодиÑовÑиков. 2. РазÑабоÑка на ÑзÑке Python Ñ Ð¸ÑполÑзованием оÑкÑÑÑой библиоÑеки TensorFlow и дÑÑгиÑ
библиоÑек набоÑа нейÑоÑеÑей Ñ ÑазнÑми аÑÑ
иÑекÑÑÑами, а Ñакже необÑ
одимого ÑопÑÑÑÑвÑÑÑего кода. 3. ÐодгоÑовка ÑаÑÑеÑной поÑÑановки Ð´Ð»Ñ Ð·Ð°Ð´Ð°Ñи о ламинаÑном обÑекании кÑÑлового пÑоÑÐ¸Ð»Ñ Ð² двÑмеÑной поÑÑановке, поÑÑÑоение базовой ÑаÑÑеÑной ÑеÑки, ÑазÑабоÑка авÑомаÑизиÑÑÑÑиÑ
ÑкÑипÑов и ÑÑÐ¸Ð»Ð¸Ñ Ð´Ð»Ñ Ð¿ÑÐ¾Ð²ÐµÐ´ÐµÐ½Ð¸Ñ Ð¼Ð°ÑÑовÑÑ
паÑамеÑÑиÑеÑкиÑ
ÑаÑÑеÑов в пакеÑе ANSYS Fluent, инÑеÑполÑÑии и визÑализаÑии полей велиÑин в пакеÑе Tecplot 360. 4. ÐÑоведение Ñ Ð¸ÑполÑзованием ÑазÑабоÑаннÑÑ
ÑÑедÑÑв авÑомаÑизаÑии ÑеÑии ÑаÑÑеÑов обÑÐµÐºÐ°Ð½Ð¸Ñ ÐºÑÑлового пÑоÑÐ¸Ð»Ñ Ð´Ð»Ñ ÑазнÑÑ
Ñглов аÑаки в ÑелÑÑ
полÑÑÐµÐ½Ð¸Ñ Ð½Ð°Ð±Ð¾Ñов даннÑÑ
Ð´Ð»Ñ Ð¾Ð±ÑÑÐµÐ½Ð¸Ñ Ð½ÐµÐ¹ÑоÑеÑей (каÑÑин полей велиÑин). 5. РазÑабоÑка пÑогÑамм Ñ Ð¿Ð¾Ð¼Ð¾ÑÑÑ ÑзÑка Python и дополниÑелÑнÑÑ
библиоÑек, позволÑÑÑиÑ
обÑабоÑаÑÑ Ð½Ð°Ð±Ð¾Ñ Ð´Ð°Ð½Ð½ÑÑ
Ð´Ð»Ñ Ð¿Ð¾Ð»ÑÑÐµÐ½Ð¸Ñ Ð´Ð°ÑаÑеÑа, пÑигодного Ð´Ð»Ñ Ð¾Ð±ÑÑÐµÐ½Ð¸Ñ Ð½ÐµÐ¹ÑоÑеÑей. 6. ÐÑÑабоÑка меÑодики обÑÑÐµÐ½Ð¸Ñ ÑазÑабоÑаннÑÑ
нейÑоÑеÑей на полÑÑеннÑÑ
набоÑаÑ
даннÑÑ
. ÐÑоведение обÑÑÐµÐ½Ð¸Ñ Ð¸ анализ каÑеÑÑва пÑогнозиÑÐ¾Ð²Ð°Ð½Ð¸Ñ Ð½ÐµÐ¹ÑоÑеÑÑÑ ÑеÑÐµÐ½Ð¸Ñ ÑаÑÑмаÑÑиваемого Ñипа. Ð ÑезÑлÑÑаÑе вÑÐ¿Ð¾Ð»Ð½ÐµÐ½Ð¸Ñ ÑабоÑÑ Ð²Ñе вÑÑепеÑеÑиÑленнÑе задаÑи бÑли ÑÑпеÑно ÑеÑенÑ, а полÑÑеннÑй оÑигиналÑнÑй маÑеÑиал и опÑÑ Ð¼Ð¾Ð³ÑÑ Ð±ÑÑÑ Ð¸ÑполÑÐ·Ð¾Ð²Ð°Ð½Ñ Ð² бÑдÑÑиÑ
ÑабоÑаÑ
по ÑемаÑике пÑÐ¸Ð¼ÐµÐ½ÐµÐ½Ð¸Ñ Ð¼ÐµÑодов маÑинного обÑÑÐµÐ½Ð¸Ñ Ð² обÑÑждаемой пÑедмеÑной облаÑÑи.
This work is devoted to research and development of methods and study of possibilities and efficiency of deep convolutional neural networks for prediction of characteristics of two-dimensional stationary laminar flows. The objectives of the research were: 1. Review of literary sources covering the issues of practical application of convolutional artificial neural networks to the problems from the field of fluid and gas mechanics, including those based on the use of autoencoders. 2. Development in Python using the open-source library TensorFlow and other libraries of a set of neural networks with different architectures, as well as the necessary accompanying code. 3. Preparing a computational statement for the problem of laminar flow over the airfoil in a two-dimensional formulation, the construction of the base computational grid, the development of automated scripts and utilities for the ANSYS Fluent bulk parametric calculations, interpolation, and visualization of the fields of values in the Tecplot 360 package. 4. Using the developed automation tools, to conduct a series of calculations of laminar flow over the airfoil for different angles of attack to obtain data sets for training neural networks (pictures of fields of values). 5. Development of programs using the Python language and additional libraries to process the data set to obtain a dataset suitable for neural network training. 6. Development of training methods for the developed neural networks on the obtained datasets. Training and quality analysis of neural network prediction of the flow of the type considered. As a result of the work all the above tasks have been successfully solved, and the original material and experience can be used in future works on the application of machine learning methods in the discussed subject area.