ISO-690 (author-date, English)

HERAS, Diego and MATOVELLE, Carlos, 2021. Machine-learning methods for hydrological imputation data: analysis of the goodness of fit of the model in hydrographic systems of the Pacific -Ecuador. Revista Ambiente e Água. 1 May 2021. Vol. 16, no. 3, p. 1-12. DOI 10.4136/ambi-agua.2708.

Elsevier - Harvard (with titles)

Heras, D., Matovelle, C., 2021. Machine-learning methods for hydrological imputation data: analysis of the goodness of fit of the model in hydrographic systems of the Pacific -Ecuador. Revista Ambiente e Água 16, 1-12. https://doi.org/10.4136/ambi-agua.2708

American Psychological Association 7th edition

Heras, D., & Matovelle, C. (2021). Machine-learning methods for hydrological imputation data: analysis of the goodness of fit of the model in hydrographic systems of the Pacific -Ecuador. Revista Ambiente E Água, 16(3), 1-12. https://doi.org/10.4136/ambi-agua.2708

Springer - Basic (author-date)

Heras D, Matovelle C (2021) Machine-learning methods for hydrological imputation data: analysis of the goodness of fit of the model in hydrographic systems of the Pacific -Ecuador.. Revista Ambiente e Água 16:1-12. https://doi.org/10.4136/ambi-agua.2708

Juristische Zitierweise (Stüber) (Deutsch)

Heras, Diego/ Matovelle, Carlos, Machine-learning methods for hydrological imputation data: analysis of the goodness of fit of the model in hydrographic systems of the Pacific -Ecuador., Revista Ambiente e Água 2021, 1-12.

Warning: These citations may not always be 100% accurate.