Treffer: Fine-tuning Large Language Models for Turkish Flutter Code Generation.
Weitere Informationen
The rapid advancement of large language models (LLMs) for code generation has largely centered on English programming queries. This paper focuses on a low-resource language scenario, specifically Turkish, in the context of Flutter mobile app development. Two representative LLMs (a 4B-parameter multilingual model and a 3B code-specialized model) on a new Turkish question-and-answer dataset for Flutter/Dart are fine-tuned in this study. Fine-tuning with parameter-efficient techniques yields dramatic improvements in code generation quality: Bilingual Evaluation Understudy (BLEU), Recall-Oriented Understudy for Gisting Evaluation (ROUGE-L), Metric for Evaluation of Translation with Explicit Ordering (METEOR), Bidirectional Encoder Representations from Transformers Score (BERTScore), and CodeBLEU scores show significant increases. The rate of correct solutions increased from ~30-70% (for base models) to 80-90% after fine-tuning. The performance trade-offs between models are analyzed, revealing that the multilingual model slightly outperforms the code-focused model in accuracy after fine-tuning. However, the code-focused model demonstrates faster inference speeds. These results demonstrate that even with very limited non-English training data, customizing LLMs can bridge the gap in code generation, enabling high-quality assistance for Turkish developers comparable to that for English. The dataset was released on GitHub to facilitate further research in multilingual code generation. [ABSTRACT FROM AUTHOR]
Copyright of Sakarya University Journal of Computer & Information Sciences (SAUCIS) is the property of Sakarya University Journal of Computer & Information Sciences (SAUCIS) and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)