Treffer: Cross-domain deep code search with meta learning.
Weitere Informationen
Recently, pre-trained programming language models such as CodeBERT have demonstrated substantial gains in code search. Despite their success, they rely on the availability of large amounts of parallel data to fine-tune the semantic mappings between queries and code. This restricts their practicality in domain-specific languages with relatively scarce and expensive data. In this paper, we propose CDCS, a novel approach for domain-specific code search. CDCS employs a transfer learning framework where an initial program representation model is pre-trained on a large corpus of common programming languages (such as Java and Python), and is further adapted to domain-specific languages such as Solidity and SQL. Unlike cross-language CodeBERT, which is directly fine-tuned in the target language, CDCS adapts a few-shot meta-learning algorithm called MAML to learn the good initialization of model parameters, which can be best reused in a domain-specific language. We evaluate the proposed approach on two domain-specific languages, namely Solidity and SQL, with model transferred from two widely used languages (Python and Java). Experimental results show that CDCS significantly outperforms conventional pre-trained code models that are directly fine-tuned in domain-specific languages, and it is particularly effective for scarce data. [ABSTRACT FROM AUTHOR]
Copyright of ICSE: International Conference on Software Engineering is the property of Association for Computing Machinery and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)