Treffer: Applicability Study of Euler–Lagrange Integration Scheme in Constructing Small-Scale Atmospheric Dynamics Models.

Title:
Applicability Study of Euler–Lagrange Integration Scheme in Constructing Small-Scale Atmospheric Dynamics Models.
Source:
Atmosphere; Jun2024, Vol. 15 Issue 6, p644, 19p
Database:
Complementary Index

Weitere Informationen

The atmospheric flow field and weather processes exhibit complex and variable characteristics at small scales, involving interactions between terrain features and atmospheric physics. To investigate the mechanisms of these process further, this study employs a Lagrangian particle motion model combined with a Euler background field approach to construct a small-scale atmospheric flow field model. The model streamlines the modeling process by combining the benefits of the Lagrangian dynamics model and the Eulerian integration scheme. To verify the effectiveness of the Euler–Lagrange hybrid model, experiments using the Fluent wind field model were conducted for comparison. The results show that both models have their advantages in handling terrain-induced wind fields. The Fluent model excels in simulating the general characteristics of wind fields under specific terrain, while the Euler–Lagrange hybrid model is better at capturing the upstream and downstream disturbances of the terrain on the atmospheric flow field. These findings provide powerful tools for in-depth diagnostic analysis of atmospheric flow simulation and convective precipitation processes. Notably, the Euler–Lagrange hybrid model demonstrates excellent computational efficiency, with an average computation time of approximately 2 s per time step in a Python environment, enabling rapid simulation of 40 time steps within approximately 90 s. [ABSTRACT FROM AUTHOR]

Copyright of Atmosphere is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)