Result: AN EXPERIMENTAL INVESTIGATION TO DETERMINE THE FAILURE LOAD OF OPTIMAL HAMMER HEAD PIER CAP AND INTERPOLATE USING UNIVARIATE SPLINES MACHINE LEARNING ALGORITHM.
Further Information
The application of structural optimisation is fast changing the thinking of Design Engineers. With the rapid development in high strength concrete and other materials which can resist higher loads, the task of reducing the weight of the structure can be addressed with ease. The present study is an application of topology optimisation of continuum structures. The design domain is modelled using first order basis splines and optimisation is performed using optimality criteria minimising strain energy as the objective function. A model pier cap is chosen with the standard dimensions of 3 feet x 9 in x 4 in. The size and location of openings are determined using topology optimisation and drawn in AutoCAD® software. The casting is done using concrete with different percentages of replacement of cement and fine aggregate. Cement is partially replaced using Alcofine and fine aggregate is partially replaced using waste foundry sand. The foundry sand is an industrial waste obtained from the foundry industry located at Balanagar, Hyderabad. Four specimen beams are cast and tested in the laboratory. Steel fibres are used to care for the tensile stresses produced within the beam. The analysis done here can be applied to any material other than concrete as well. The failure load is determined in the laboratory for each sample. The interpolation of failure load is done using python code and run on Anaconda Jupyter ® platform to determine the value of failure load for any percentage of replacement between 0 to 10%. [ABSTRACT FROM AUTHOR]
Copyright of i-Manager's Journal on Civil Engineering is the property of i-manager Publications and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)