Treffer: Quantum Bayesian Decision-Making.

Title:
Quantum Bayesian Decision-Making.
Source:
Foundations of Science; Mar2023, Vol. 28 Issue 1, p21-41, 21p, 6 Diagrams, 3 Charts, 2 Graphs
Database:
Complementary Index

Weitere Informationen

As a compact representation of joint probability distributions over a dependence graph of random variables, and a tool for modelling and reasoning in the presence of uncertainty, Bayesian networks are of great importance for artificial intelligence to combine domain knowledge, capture causal relationships, or learn from incomplete datasets. Known as a NP-hard problem in a classical setting, Bayesian inference pops up as a class of algorithms worth to explore in a quantum framework. This paper explores such a research direction and improves on previous proposals by a judicious use of the utility function in an entangled configuration. It proposes a completely quantum mechanical decision-making process with a proven computational advantage. A prototype implementation in Qiskit (a Python-based program development kit for the IBM Q machine) is discussed as a proof-of-concept. [ABSTRACT FROM AUTHOR]

Copyright of Foundations of Science is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)