Treffer: PyCLM: programming-free, closed-loop microscopy for real-time measurement, segmentation, and optogenetic stimulation.
Nature. 2009 Sep 3;461(7260):104-8. (PMID: 19693014)
Nature. 2009 Oct 15;461(7266):997-1001. (PMID: 19749742)
Nat Methods. 2019 Dec;16(12):1233-1246. (PMID: 31133758)
Elife. 2015 Feb 10;4:e05178. (PMID: 25668746)
Nat Cell Biol. 2018 May;20(5):541-552. (PMID: 29662173)
Commun Biol. 2023 May 9;6(1):502. (PMID: 37161000)
Nature. 2009 May 21;459(7245):428-32. (PMID: 19363473)
Nat Methods. 2017 Jan;14(1):53-56. (PMID: 27869816)
Cell. 2014 Jun 19;157(7):1724-34. (PMID: 24949979)
Curr Biol. 2020 Sep 7;30(17):3414-3424.e3. (PMID: 32707057)
Nature. 2006 Nov 30;444(7119):643-6. (PMID: 17122776)
Trends Cell Biol. 2015 Sep;25(9):556-66. (PMID: 26137890)
Chem Rev. 2018 Dec 26;118(24):11707-11794. (PMID: 30550275)
Dev Cell. 2017 Nov 6;43(3):305-317.e5. (PMID: 29112851)
Dev Cell. 2020 Jun 22;53(6):646-660.e8. (PMID: 32497487)
Cold Spring Harb Perspect Biol. 2009 Jul;1(1):a000802. (PMID: 20066075)
Nat Methods. 2011 Sep 11;8(10):837-9. (PMID: 21909100)
Nat Biotechnol. 2021 Jul;39(7):865-876. (PMID: 33619394)
Cell. 2017 Jan 12;168(1-2):159-171.e14. (PMID: 28041848)
Cell Syst. 2018 Jun 27;6(6):655-663.e5. (PMID: 29859829)
Chem Biol. 2014 Jul 17;21(7):903-12. (PMID: 24981772)
Nat Methods. 2023 Apr;20(4):541-545. (PMID: 36973546)
Nat Methods. 2025 Mar;22(3):592-599. (PMID: 39939718)
Cell Syst. 2020 Nov 18;11(5):478-494.e9. (PMID: 33113355)
PLoS Biol. 2023 Sep 25;21(9):e3002307. (PMID: 37747905)
Weitere Informationen
In cell biology, optical techniques are increasingly used to measure cells' internal states (biosensors) and to stimulate cellular responses (optogenetics). Yet the design of all-optical experiments is often manual: a pre-determined stimulus pattern is applied to cells, biosensors are measured over time, and the resulting data is processed off-line. With the advent of machine learning for segmentation and tracking, it becomes possible to envision closed-loop experiments where real-time information about cells' positions and states are used to dynamically determine optogenetic stimuli to alter or control their behavior. Here, we develop PyCLM, a Python-based suite of tools to enable real-time measurement, image segmentation, and optogenetic control of thousands of cells per experiment. PyCLM is designed to be as simple for the end user as possible, and multipoint experiments can be set up that combine a wide variety of imaging, image processing, and stimulation modalities without any programming. We showcase PyCLM on diverse applications: studying the effect of epidermal growth factor receptor activity waves on epithelial tissue movement, simultaneously stimulating ~1,000 single cells to guide tissue flows, and performing real-time feedback control of cell-to-cell fluorescence heterogeneity. This tool will enable the next generation of dynamic experiments to probe cell and tissue properties, and provides a first step toward precise control of cell states at the tissue scale.
Declaration of interests J.E.T. is a scientific advisor for Prolific Machines and Nereid Therapeutics. The remaining authors declare no conflicts of interest.