Treffer: Improved Source Localization of Auditory Evoked Fields using Reciprocal BEM-FMM.
IEEE Trans Biomed Eng. 2018 Dec;65(12):2675-2683. (PMID: 29993385)
Phys Med Biol. 2024 Aug 28;69(17):. (PMID: 39042098)
Audiol Neurootol. 1998 Mar-Jun;3(2-3):191-213. (PMID: 9575385)
Sci Rep. 2021 Mar 31;11(1):7255. (PMID: 33790320)
Clin Neurophysiol. 2013 Oct;124(10):1995-2007. (PMID: 23890512)
Clin Neurophysiol. 2001 Oct;112(10):1850-9. (PMID: 11595143)
J Neural Eng. 2020 Aug 04;17(4):046023. (PMID: 32235065)
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6587-90. (PMID: 23367439)
Neurosci Lett. 1987 Dec 4;82(3):303-7. (PMID: 3696502)
Front Neurosci. 2019 Jun 04;13:531. (PMID: 31231178)
Bioengineering (Basel). 2024 Oct 26;11(11):. (PMID: 39593731)
IEEE Trans Biomed Eng. 1972 May;19(3):239-44. (PMID: 5021223)
Neuroimage. 2012 Aug 15;62(2):774-81. (PMID: 22248573)
Front Neurosci. 2013 Dec 26;7:267. (PMID: 24431986)
Biophys J. 1967 Jan;7(1):1-11. (PMID: 19210978)
Neuroimage. 2010 Oct 15;53(1):1-15. (PMID: 20547229)
Int J Psychophysiol. 2008 May;68(2):170-5. (PMID: 18304666)
Front Psychiatry. 2024 Aug 12;15:1434434. (PMID: 39188521)
Neuroimage. 2014 Feb 1;86:446-60. (PMID: 24161808)
Clin Psychopharmacol Neurosci. 2022 Aug 31;20(3):514-525. (PMID: 35879036)
Neuroimage. 2015 Apr 1;109:140-50. (PMID: 25613437)
Neurosci Lett. 2024 Mar 28;827:137734. (PMID: 38499279)
Neuroimage. 2009 Oct 1;47(4):1319-30. (PMID: 19371785)
J Clin Neurophysiol. 2000 Mar;17(2):201-11. (PMID: 10831111)
Brain Res. 1995 Dec 12;703(1-2):139-44. (PMID: 8719625)
Electroencephalogr Clin Neurophysiol. 1994 May;92(3):204-14. (PMID: 7514990)
Neuroimage. 2025 Feb 01;306:120998. (PMID: 39753164)
Neuroimage. 2018 Jul 1;174:587-598. (PMID: 29518567)
Biophys J. 1992 Jul;63(1):129-38. (PMID: 1420862)
Med Biol Eng Comput. 1994 Jan;32(1):35-42. (PMID: 8182960)
Phys Med Biol. 1996 Nov;41(11):2271-93. (PMID: 8938026)
IEEE Trans Biomed Eng. 2004 Sep;51(9):1586-98. (PMID: 15376507)
Neuroimage. 2025 Sep 20;:121452. (PMID: 40983228)
Neuron. 2000 Apr;26(1):55-67. (PMID: 10798392)
Weitere Informationen
The precise localization of auditory evoked fields (AEFs) from magnetoencephalography (MEG) data is very important for the functional understanding of the auditory cortex in medicine and cognitive neuroscience. The numerical solution of the field equations in the human head using the boundary element method (BEM) is a powerful tool for achieving this. We hypothesized that the spatial resolution of the BEM is crucial for the achievable accuracy. However, in classical BEM (as implemented, e.g., in MNE-Python), very high resolutions are impractical due to the associated prohibitive computational effort. In contrast, our recently introduced reciprocal boundary element fast multipole method (reciprocal BEM-FMM) allows for hitherto unprecedented spatial resolution. In this work, we apply our reciprocal BEM-FMM technique for source estimation to localize AEFs, and we compare our results with the source estimates produced using a 3-layer BEM model (standard BEM) via MNE-Python. We first validate our methodology through comparison of source estimates of simulated N1m components of AEFs using a receiver operating characteristic (ROC) measure. While we obtain ROC measures of about 80% for the standard BEM, reciprocal BEM-FMM reaches about 90%, a significant statistical improvement. We then apply this methodology to analyze the source estimates of experimental data obtained from a cohort of 7 participants subjected to binaural auditory stimulation. Using a dispersion measurement to quantify the focality of localized sources, we find improvements upwards of 30% using reciprocal BEM-FMM over the standard BEM. Analyses from both simulated and experimental data show localization of AEFs using high-resolution reciprocal BEM-FMM is significantly better in terms of accuracy and focality than those estimates of the low-resolution standard BEM. We therefore recommend using the high-resolution reciprocal BEM-FMM to utilize high spatial anatomical precision for the modeling of neural activity.