Treffer: pDILI_v1: A Web-Based Machine Learning Tool for Predicting Drug-Induced Liver Injury (DILI) Integrating Chemical Space Analysis and Molecular Fingerprints.
Chemosphere. 2023 Oct;337:139435. (PMID: 37422210)
SAR QSAR Environ Res. 2024 Sep;35(9):817-836. (PMID: 39422534)
Arch Toxicol. 2022 May;96(5):1279-1295. (PMID: 35267067)
Front Artif Intell. 2021 Apr 14;4:638410. (PMID: 33937745)
J Cheminform. 2024 Jan 3;16(1):1. (PMID: 38173043)
Methods Mol Biol. 2025;2834:131-149. (PMID: 39312163)
Eur J Intern Med. 2016 Mar;28:9-16. (PMID: 26827101)
Food Chem Toxicol. 2023 Sep;179:113948. (PMID: 37460037)
J Mol Graph Model. 2023 Sep;123:108510. (PMID: 37216830)
Toxics. 2023 Jun 30;11(7):. (PMID: 37505541)
Nat Rev Dis Primers. 2019 Aug 22;5(1):58. (PMID: 31439850)
Bioinformatics. 2022 Sep 15;38(18):4426-4427. (PMID: 35900148)
Methods Mol Biol. 2018;1800:141-169. (PMID: 29934891)
BMC Med. 2016 Feb 04;14:10. (PMID: 26843061)
Anal Sci. 2020 Jan 10;36(1):107-111. (PMID: 31735763)
Front Bioinform. 2022 Jun 27;2:927312. (PMID: 36304293)
Acta Pharmacol Sin. 2014 Aug;35(8):1093-102. (PMID: 24976154)
J Cheminform. 2015 May 20;7:20. (PMID: 26052348)
Front Pharmacol. 2019 Oct 24;10:1235. (PMID: 31708776)
J Cheminform. 2018 Feb 06;10(1):4. (PMID: 29411163)
J Chem Inf Model. 2010 May 24;50(5):742-54. (PMID: 20426451)
Chem Res Toxicol. 2024 Aug 19;37(8):1290-1305. (PMID: 38981058)
Micromachines (Basel). 2023 Jan 20;14(2):. (PMID: 36837965)
Weitere Informationen
Drug-induced liver injury (DILI) represents a critical safety concern for drug development, regulatory oversight, and clinical practice, with substantial economic and public health implications. While predicting DILI risk in humans has garnered significant attention, the associated chemical space has remained insufficiently explored. This study addresses this gap through a comprehensive computational approach, leveraging machine learning (ML) to investigate structural determinants of DILI risk systematically. The study focuses on three key objectives: (i) exploring the chemical space and scaffold diversity associated with DILI; (ii) employing fragment-based approaches to identify structural alerts (SAs) that influence DILI risk; and (iii) developing supervised ML models to not only predict DILI risk but also elucidate the structural significance of molecular fingerprints. To broaden accessibility, we introduce pDILI_v1, a Python-based web application available at https://pdiliv1web.streamlit.app/. This user-friendly platform facilitates the prediction and visualization of DILI risk, enabling both experts and nonexperts to screen compounds effectively. Additional formats, including a Google Colab notebook and a graphical user interface (GUI) for Windows, ensure flexibility for diverse user needs. The proposed models demonstrate the potential for early identification of hepatotoxic risks in drug candidates, providing critical insights into drug discovery and development. By integrating ML-driven predictions with chemical space analysis, this research advances the field of drug safety evaluation, contributing to the development of safer pharmaceuticals and mitigating the risks of DILI.
(© 2025 The Authors. Published by American Chemical Society.)
The authors declare no competing financial interest.