Treffer: Navigating Drug-Induced Adversities: A Python-Based Console Application for Causality Assessment Using the Naranjo Algorithm.
J Am Med Inform Assoc. 2007 Jul-Aug;14(4):451-8. (PMID: 17460130)
Clin Pharmacol Ther. 1981 Aug;30(2):239-45. (PMID: 7249508)
JAMA. 2005 Mar 9;293(10):1197-203. (PMID: 15755942)
BMJ. 2004 Jul 3;329(7456):15-9. (PMID: 15231615)
JAMA. 1998 Apr 15;279(15):1200-5. (PMID: 9555760)
J Am Med Inform Assoc. 2015 Nov;22(6):1243-50. (PMID: 25829460)
N Engl J Med. 2003 Jun 19;348(25):2526-34. (PMID: 12815139)
Drug Saf. 2010 Jul 1;33(7):535-8. (PMID: 20553055)
J Am Med Inform Assoc. 2004 Mar-Apr;11(2):104-12. (PMID: 14633936)
Pharmacoepidemiol Drug Saf. 2007 Jun;16(6):641-51. (PMID: 17154346)
Drug Saf. 2008;31(1):21-37. (PMID: 18095744)
J Am Med Inform Assoc. 1998 May-Jun;5(3):305-14. (PMID: 9609500)
Drug Saf. 2009;32(1):19-31. (PMID: 19132802)
J Am Geriatr Soc. 1997 Aug;45(8):945-8. (PMID: 9256846)
Int J Pharm Pract. 2012 Dec;20(6):349-57. (PMID: 23134093)
Weitere Informationen
The timely and accurate adverse drug reactions (ADR) assessment is vital for effective patient management and healthcare delivery. The Naranjo Algorithm is a widely recognized tool for determining the probability that a drug induces a given ADR. However, the process can be time-consuming and susceptible to human error. This study introduces a Python-based console application (Python Software Foundation, Wilmington, Delaware, United States) designed to automate the Naranjo Algorithm for ADR causality assessment. The application was developed using Python 3.11.4 on a Windows 11 system (Microsoft Corporation, Redmond, Washington, United States) and compiled in Notepad (Microsoft Corporation), a basic text editor, highlighting its accessibility and ease of use in various settings. User input is solicited for each question in the Naranjo Algorithm, validated for acceptable entries, and subsequently scored. The final score categorizes the reaction into Doubtful, Possible, Probable, or Definite ADR, facilitating rapid clinical decision-making. Preliminary validation shows promising reliability and effectiveness, making it a valuable asset in research and clinical settings for assessment.
(Copyright © 2023, Kumar et al.)
The authors have declared that no competing interests exist.