Treffer: JustDeepIt: Software tool with graphical and character user interfaces for deep learning-based object detection and segmentation in image analysis.
Plant Methods. 2021 Apr 29;17(1):48. (PMID: 33926480)
PLoS Comput Biol. 2021 Mar 2;17(3):e1008374. (PMID: 33651804)
Comput Vis Media (Beijing). 2021;7(1):37-69. (PMID: 33432275)
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):318-327. (PMID: 30040631)
PeerJ. 2017 Dec 1;5:e4088. (PMID: 29209576)
New Phytol. 2022 Oct;236(2):774-791. (PMID: 35851958)
Trends Genet. 2021 Dec;37(12):1124-1136. (PMID: 34531040)
Plant Phenomics. 2020 Aug 20;2020:3521852. (PMID: 33313551)
Nat Commun. 2021 Apr 15;12(1):2276. (PMID: 33859193)
Plant Phenomics. 2020 Apr 9;2020:4152816. (PMID: 33313554)
Front Plant Sci. 2021 Sep 03;12:716784. (PMID: 34539710)
Nat Methods. 2019 Dec;16(12):1233-1246. (PMID: 31133758)
J Adv Res. 2021 May 12;35:215-230. (PMID: 35003802)
Plant Methods. 2021 Feb 24;17(1):22. (PMID: 33627131)
PeerJ. 2014 Jun 19;2:e453. (PMID: 25024921)
Weitere Informationen
Image processing and analysis based on deep learning are becoming mainstream and increasingly accessible for solving various scientific problems in diverse fields. However, it requires advanced computer programming skills and a basic familiarity with character user interfaces (CUIs). Consequently, programming beginners face a considerable technical hurdle. Because potential users of image analysis are experimentalists, who often use graphical user interfaces (GUIs) in their daily work, there is a need to develop GUI-based easy-to-use deep learning software to support their work. Here, we introduce JustDeepIt, a software written in Python, to simplify object detection and instance segmentation using deep learning. JustDeepIt provides both a GUI and a CUI. It contains various functional modules for model building and inference, and it is built upon the popular PyTorch, MMDetection, and Detectron2 libraries. The GUI is implemented using the Python library FastAPI, simplifying model building for various deep learning approaches for beginners. As practical examples of JustDeepIt, we prepared four case studies that cover critical issues in plant science: (1) wheat head detection with Faster R-CNN, YOLOv3, SSD, and RetinaNet; (2) sugar beet and weed segmentation with Mask R-CNN; (3) plant segmentation with U <sup>2</sup> -Net; and (4) leaf segmentation with U <sup>2</sup> -Net. The results support the wide applicability of JustDeepIt in plant science applications. In addition, we believe that JustDeepIt has the potential to be applied to deep learning-based image analysis in various fields beyond plant science.
(Copyright © 2022 Sun, Cao and Yamanaka.)
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.