Treffer: Gnocis: An integrated system for interactive and reproducible analysis and modelling of cis-regulatory elements in Python 3.
Nucleic Acids Res. 2019 Sep 5;47(15):7781-7797. (PMID: 31340029)
Nucleic Acids Res. 2012 Jul;40(13):5848-63. (PMID: 22416065)
PLoS Comput Biol. 2008 Oct;4(10):e1000173. (PMID: 18974822)
Nat Biotechnol. 2006 Apr;24(4):423-5. (PMID: 16601727)
PLoS Genet. 2014 Jul 10;10(7):e1004495. (PMID: 25010632)
Nat Rev Mol Cell Biol. 2014 May;15(5):340-56. (PMID: 24755934)
Nucleic Acids Res. 2018 Jan 4;46(D1):D754-D761. (PMID: 29155950)
Bioinformatics. 2019 Oct 1;35(19):3831-3833. (PMID: 30850831)
Nucleic Acids Res. 2013 Jan;41(Database issue):D751-7. (PMID: 23125371)
Dev Cell. 2003 Nov;5(5):759-71. (PMID: 14602076)
Bioinformatics. 2009 Jun 1;25(11):1422-3. (PMID: 19304878)
Bioinformatics. 2004 Mar 1;20(4):467-76. (PMID: 14990442)
J Bioinform Comput Biol. 2014 Dec;12(6):1442006. (PMID: 25385081)
Bioinformatics. 2011 Dec 15;27(24):3423-4. (PMID: 21949271)
Nat Methods. 2020 Mar;17(3):352. (PMID: 32094914)
Genome Res. 2011 Dec;21(12):2167-80. (PMID: 21875935)
Bioinformatics. 2015 Apr 15;31(8):1307-9. (PMID: 25504848)
Nat Methods. 2020 Mar;17(3):261-272. (PMID: 32015543)
Bioinformatics. 2020 Dec 30;36(Suppl_2):i857-i865. (PMID: 33381828)
Nature. 2009 Jun 18;459(7249):927-30. (PMID: 19536255)
Bioessays. 2014 Feb;36(2):163-72. (PMID: 24277632)
PLoS One. 2015 Mar 04;10(3):e0118432. (PMID: 25738806)
BMC Bioinformatics. 2021 May 7;22(1):234. (PMID: 33962556)
Genome Res. 2011 Feb;21(2):216-26. (PMID: 21177970)
Nat Rev Genet. 2012 Jun 18;13(7):469-83. (PMID: 22705667)
Genome Res. 2014 Mar;24(3):401-10. (PMID: 24336765)
Weitere Informationen
Gene expression is regulated through cis-regulatory elements (CREs), among which are promoters, enhancers, Polycomb/Trithorax Response Elements (PREs), silencers and insulators. Computational prediction of CREs can be achieved using a variety of statistical and machine learning methods combined with different feature space formulations. Although Python packages for DNA sequence feature sets and for machine learning are available, no existing package facilitates the combination of DNA sequence feature sets with machine learning methods for the genome-wide prediction of candidate CREs. We here present Gnocis, a Python package that streamlines the analysis and the modelling of CRE sequences by providing extensible APIs and implementing the glue required for combining feature sets and models for genome-wide prediction. Gnocis implements a variety of base feature sets, including motif pair occurrence frequencies and the k-spectrum mismatch kernel. It integrates with Scikit-learn and TensorFlow for state-of-the-art machine learning. Gnocis additionally implements a broad suite of tools for the handling and preparation of sequence, region and curve data, which can be useful for general DNA bioinformatics in Python. We also present Deep-MOCCA, a neural network architecture inspired by SVM-MOCCA that achieves moderate to high generalization without prior motif knowledge. To demonstrate the use of Gnocis, we applied multiple machine learning methods to the modelling of D. melanogaster PREs, including a Convolutional Neural Network (CNN), making this the first study to model PREs with CNNs. The models are readily adapted to new CRE modelling problems and to other organisms. In order to produce a high-performance, compiled package for Python 3, we implemented Gnocis in Cython. Gnocis can be installed using the PyPI package manager by running 'pip install gnocis'. The source code is available on GitHub, at https://github.com/bjornbredesen/gnocis.
The authors have declared that no competing interests exist.