Treffer: How can natural language processing help model informed drug development?: a review.
Drug Saf. 2019 Jan;42(1):99-111. (PMID: 30649735)
J Biomed Inform. 2021 May;117:103771. (PMID: 33813032)
BMC Bioinformatics. 2019 Feb 8;20(1):70. (PMID: 30736752)
Clin Pharmacol Ther. 2020 Apr;107(4):934-943. (PMID: 31957870)
Methods Mol Biol. 2021;2190:139-165. (PMID: 32804364)
J Am Med Inform Assoc. 2017 Nov 01;24(6):1062-1071. (PMID: 28379377)
J Cheminform. 2021 Sep 22;13(1):71. (PMID: 34551818)
Comput Methods Programs Biomed. 2021 Sep;208:106304. (PMID: 34333208)
Bioinformatics. 2018 Sep 1;34(17):i821-i829. (PMID: 30423097)
J Am Med Inform Assoc. 2014 Sep-Oct;21(5):858-65. (PMID: 24637954)
Front Chem. 2020 Jan 10;7:895. (PMID: 31998687)
J Am Med Inform Assoc. 2004 Sep-Oct;11(5):392-402. (PMID: 15187068)
JCO Clin Cancer Inform. 2021 Aug;5:833-841. (PMID: 34406803)
J Am Med Inform Assoc. 2015 Jan;22(1):166-78. (PMID: 25030032)
Springerplus. 2016 Sep 20;5(1):1608. (PMID: 27652181)
Nat Rev Drug Discov. 2019 Jun;18(6):463-477. (PMID: 30976107)
JMIR Med Inform. 2020 Nov 27;8(11):e22661. (PMID: 33245290)
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. (PMID: 21685143)
Alzheimers Dement (N Y). 2017 Nov 11;3(4):651-657. (PMID: 29255791)
Brief Bioinform. 2021 Mar 22;22(2):726-741. (PMID: 33147623)
Drug Discov Today. 2021 May;26(5):1256-1264. (PMID: 33358699)
Trends Pharmacol Sci. 2021 Apr;42(4):255-267. (PMID: 33563480)
Intensive Care Med. 2016 Nov;42(11):1797-1800. (PMID: 26334756)
BMC Bioinformatics. 2013 Jun 06;14:181. (PMID: 23742147)
Bioinformatics. 2012 Jun 15;28(12):1633-40. (PMID: 22500000)
Drug Discov Today. 2021 Nov;26(11):2593-2607. (PMID: 34216835)
F1000Res. 2017 Apr 26;6:578. (PMID: 28529714)
Pharm Res. 2022 Feb 16;:. (PMID: 35174432)
Bioinformatics. 2021 May 5;37(6):830-836. (PMID: 33070179)
Trends Pharmacol Sci. 2019 Aug;40(8):577-591. (PMID: 31326235)
Clin Pharmacol Ther. 2021 Dec;110(6):1537-1546. (PMID: 34314511)
Methods Mol Biol. 2019;1939:231-252. (PMID: 30848465)
Contemp Clin Trials Commun. 2018 Aug 07;11:156-164. (PMID: 30112460)
Pharm Res. 2022 Apr 11;:. (PMID: 35411507)
Curr Med Chem. 2021;28(11):2100-2113. (PMID: 32895036)
Database (Oxford). 2018 Jan 1;2018:1-13. (PMID: 30219839)
Bioinformatics. 2020 Feb 15;36(4):1234-1240. (PMID: 31501885)
AMIA Annu Symp Proc. 2003;:195-9. (PMID: 14728161)
IEEE J Biomed Health Inform. 2020 Oct;24(10):2950-2959. (PMID: 32149659)
BMC Bioinformatics. 2020 Dec 16;21(Suppl 16):543. (PMID: 33323106)
Genet Epidemiol. 2017 Jan;41(1):51-60. (PMID: 27873357)
BMC Bioinformatics. 2015 Feb 21;16:55. (PMID: 25886734)
Clin Transl Gastroenterol. 2019 Mar;10(3):e00018. (PMID: 30908310)
J Cheminform. 2014 Apr 28;6:17. (PMID: 24834132)
Pharmacol Rep. 2020 Dec;72(6):1479-1508. (PMID: 32889701)
Semin Cancer Biol. 2021 Jan;68:132-142. (PMID: 31904426)
J Am Med Inform Assoc. 2017 Jul 01;24(4):781-787. (PMID: 28339690)
J Am Med Inform Assoc. 2017 Jul 01;24(4):813-821. (PMID: 28339747)
Database (Oxford). 2015 Apr 15;2015:bav028. (PMID: 25877637)
BMC Chem. 2021 Feb 2;15(1):8. (PMID: 33531083)
Mol Divers. 2021 Aug;25(3):1315-1360. (PMID: 33844136)
Brief Bioinform. 2021 Jan 18;22(1):247-269. (PMID: 31950972)
J Chem Inf Model. 2015 Nov 23;55(11):2324-37. (PMID: 26479676)
Nucleic Acids Res. 2007 Jan;35(Database issue):D198-201. (PMID: 17145705)
PLoS One. 2018 Jan 26;13(1):e0190926. (PMID: 29373599)
Comput Struct Biotechnol J. 2020 Mar 30;18:784-790. (PMID: 32280433)
J Am Med Inform Assoc. 2019 Apr 1;26(4):294-305. (PMID: 30753493)
AMIA Jt Summits Transl Sci Proc. 2014 Apr 07;2014:218-23. (PMID: 25717416)
J Biomed Semantics. 2018 Mar 30;9(1):12. (PMID: 29602312)
Drug Discov Today. 2020 Apr;25(4):689-705. (PMID: 32027969)
Methods Mol Biol. 2014;1159:47-75. (PMID: 24788261)
Drug Discov Today. 2018 Jun;23(6):1241-1250. (PMID: 29366762)
Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. (PMID: 29126136)
Database (Oxford). 2016 Mar 19;2016:. (PMID: 26994911)
Pac Symp Biocomput. 2020;25:463-474. (PMID: 31797619)
RSC Adv. 2021 Jul 27;11(42):25921-25932. (PMID: 35479483)
J Am Med Inform Assoc. 2019 Nov 1;26(11):1218-1226. (PMID: 31300825)
J Am Med Inform Assoc. 2010 Jan-Feb;17(1):19-24. (PMID: 20064797)
Comput Struct Biotechnol J. 2021 May 11;19:2960-2967. (PMID: 34136095)
Biomed Eng Online. 2018 Nov 6;17(Suppl 2):155. (PMID: 30396345)
Healthc Inform Res. 2019 Jan;25(1):1-2. (PMID: 30788175)
Weitere Informationen
Objective: To summarize applications of natural language processing (NLP) in model informed drug development (MIDD) and identify potential areas of improvement.
Materials and Methods: Publications found on PubMed and Google Scholar, websites and GitHub repositories for NLP libraries and models. Publications describing applications of NLP in MIDD were reviewed. The applications were stratified into 3 stages: drug discovery, clinical trials, and pharmacovigilance. Key NLP functionalities used for these applications were assessed. Programming libraries and open-source resources for the implementation of NLP functionalities in MIDD were identified.
Results: NLP has been utilized to aid various processes in drug development lifecycle such as gene-disease mapping, biomarker discovery, patient-trial matching, adverse drug events detection, etc. These applications commonly use NLP functionalities of named entity recognition, word embeddings, entity resolution, assertion status detection, relation extraction, and topic modeling. The current state-of-the-art for implementing these functionalities in MIDD applications are transformer models that utilize transfer learning for enhanced performance. Various libraries in python, R, and Java like huggingface, sparkNLP, and KoRpus as well as open-source platforms such as DisGeNet, DeepEnroll, and Transmol have enabled convenient implementation of NLP models to MIDD applications.
Discussion: Challenges such as reproducibility, explainability, fairness, limited data, limited language-support, and security need to be overcome to ensure wider adoption of NLP in MIDD landscape. There are opportunities to improve the performance of existing models and expand the use of NLP in newer areas of MIDD.
Conclusions: This review provides an overview of the potential and pitfalls of current NLP approaches in MIDD.
(© The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association.)