Treffer: FEMfuns: A Volume Conduction Modeling Pipeline that Includes Resistive, Capacitive or Dispersive Tissue and Electrodes.
Hum Brain Mapp. 2013 Apr;34(4):923-35. (PMID: 22109746)
Neuroimage. 2014 Jan 15;85 Pt 3:1048-57. (PMID: 23850466)
Neuron. 2007 Sep 6;55(5):809-23. (PMID: 17785187)
Clin Neurophysiol. 2005 Oct;116(10):2490-500. (PMID: 16125463)
Comput Intell Neurosci. 2011;2011:156869. (PMID: 21253357)
Bull Math Biophys. 1967 Dec;29(4):657-64. (PMID: 5582145)
J Neural Eng. 2008 Mar;5(1):54-67. (PMID: 18310811)
IEEE Trans Biomed Eng. 2008 Feb;55(2 Pt 1):683-92. (PMID: 18270005)
J Neurophysiol. 2010 Dec;104(6):3388-412. (PMID: 20810682)
IEEE Trans Biomed Eng. 2010 Oct;57(10):2386-93. (PMID: 20595081)
IEEE Trans Biomed Eng. 1969 Jan;16(1):15-22. (PMID: 5775600)
J Neural Eng. 2011 Jun;8(3):036017. (PMID: 21540485)
PLoS One. 2009;4(3):e4828. (PMID: 19279677)
J Neurophysiol. 2010 May;103(5):2315-7. (PMID: 20220081)
PLoS One. 2021 Jun 4;16(6):e0252431. (PMID: 34086715)
Front Neuroinform. 2018 Dec 18;12:92. (PMID: 30618697)
Front Hum Neurosci. 2017 Oct 18;11:490. (PMID: 29093671)
J Neurophysiol. 2017 Mar 1;117(3):876-884. (PMID: 27852731)
Biomed Eng Online. 2018 Mar 27;17(1):37. (PMID: 29580236)
Front Neurosci. 2018 Feb 02;12:30. (PMID: 29456487)
Neuroimage. 2007 Jan 15;34(2):661-70. (PMID: 17113789)
Neuroimage. 2012 Aug 15;62(2):782-90. (PMID: 21979382)
Elife. 2020 Jan 22;9:. (PMID: 31967544)
eNeuro. 2017 Jan 31;4(1):. (PMID: 28197543)
Neuroimage. 2011 Oct 1;58(3):849-59. (PMID: 21749927)
Biophys J. 2017 Oct 3;113(7):1639-1642. (PMID: 28978454)
IEEE Trans Med Imaging. 2002 Jun;21(6):604-12. (PMID: 12166856)
Hum Brain Mapp. 1998;6(4):250-69. (PMID: 9704264)
IEEE Trans Biomed Eng. 1993 Nov;40(11):1166-74. (PMID: 8307601)
Phys Med Biol. 1996 Nov;41(11):2271-93. (PMID: 8938026)
IEEE Trans Biomed Eng. 2015 Nov;62(11):2648-56. (PMID: 26054057)
Biophys J. 2016 Jan 5;110(1):234-46. (PMID: 26745426)
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:222-5. (PMID: 26736240)
Weitere Informationen
Applications such as brain computer interfaces require recordings of relevant neuronal population activity with high precision, for example, with electrocorticography (ECoG) grids. In order to achieve this, both the placement of the electrode grid on the cortex and the electrode properties, such as the electrode size and material, need to be optimized. For this purpose, it is essential to have a reliable tool that is able to simulate the extracellular potential, i.e., to solve the so-called ECoG forward problem, and to incorporate the properties of the electrodes explicitly in the model. In this study, this need is addressed by introducing the first open-source pipeline, FEMfuns (finite element method for useful neuroscience simulations), that allows neuroscientists to solve the forward problem in a variety of different geometrical domains, including different types of source models and electrode properties, such as resistive and capacitive materials. FEMfuns is based on the finite element method (FEM) implemented in FEniCS and includes the geometry tessellation, several electrode-electrolyte implementations and adaptive refinement options. The Python code of the pipeline is available under the GNU General Public License version 3 at https://github.com/meronvermaas/FEMfuns . We tested our pipeline with several geometries and source configurations such as a dipolar source in a multi-layer sphere model and a five-compartment realistically-shaped head model. Furthermore, we describe the main scripts in the pipeline, illustrating its flexible and versatile use. Provided with a sufficiently fine tessellation, the numerical solution of the forward problem approximates the analytical solution. Furthermore, we show dispersive material and interface effects in line with previous literature. Our results indicate substantial capacitive and dispersive effects due to the electrode-electrolyte interface when using stimulating electrodes. The results demonstrate that the pipeline presented in this paper is an accurate and flexible tool to simulate signals generated on electrode grids by the spatiotemporal electrical activity patterns produced by sources and thereby allows the user to optimize grids for brain computer interfaces including exploration of alternative electrode materials/properties.