Treffer: Coordinating Computation and I/O in Massively Parallel Sequence Search.
Weitere Informationen
With the explosive growth of genomic information, the searching of sequence databases has emerged as one of the most computation and data-intensive scientific applications. Our previous studies suggested that parallel genomic sequence-search possesses highly irregular computation and I/O patterns. Effectively addressing these runtime irregularities is thus the key to designing scalable sequence-search tools on massively parallel computers. While the computation scheduling for irregular scientific applications and the optimization of noncontiguous file accesses have been well-studied independently, little attention has been paid to the interplay between the two. In this paper, we systematically investigate the computation and I/O scheduling for data-intensive, irregular scientific applications within the context of genomic sequence search. Our study reveals that the lack of coordination between computation scheduling and I/O optimization could result in severe performance issues. We then propose an integrated scheduling approach that effectively improves sequence-search throughput by gracefully coordinating the dynamic load balancing of computation and high-performance noncontiguous I/O. [ABSTRACT FROM AUTHOR]
Copyright of IEEE Transactions on Parallel & Distributed Systems is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)