Treffer: An Efficient Optimization Model and Tabu Search–Based Global Optimization Approach for the Continuous p -Dispersion Problem.
Weitere Informationen
Continuous p-dispersion problems with and without boundary constraints are NP-hard optimization problems with numerous real-world applications, notably in facility location and circle packing, which are widely studied in mathematics and operations research. In this work, we concentrate on general cases with a nonconvex multiply connected region that are rarely studied in the literature due to their intractability and the absence of an efficient optimization model. Using the penalty function approach, we design a unified and almost everywhere differentiable optimization model for these complex problems and propose a tabu search–based global optimization (TSGO) algorithm for solving them. Computational results over a variety of benchmark instances show that the proposed model works very well, allowing popular local optimization methods (e.g., the quasi-Newton methods and the conjugate gradient methods) to reach high-precision solutions due to the differentiability of the model. These results further demonstrate that the proposed TSGO algorithm is very efficient and significantly outperforms several popular global optimization algorithms in the literature, improving the best-known solutions for several existing instances in a short computational time. Experimental analyses are conducted to show the influence of several key ingredients of the algorithm on computational performance. History: Accepted by Erwin Pesch, Area Editor for Heuristic Search & Approximation Algorithms. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72122006, 71821001, and 72471100] Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information (https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0089) as well as from the IJOC GitHub software repository (https://github.com/INFORMSJoC/2023.0089). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/. [ABSTRACT FROM AUTHOR]
Copyright of INFORMS Journal on Computing is the property of INFORMS: Institute for Operations Research & the Management Sciences and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Volltext ist im Gastzugang nicht verfügbar. Login für vollen Zugriff.