Treffer: Cardinality objective nonlinear programs for facility capacity expansion.

Title:
Cardinality objective nonlinear programs for facility capacity expansion.
Authors:
Li, Gao-Xi1 (AUTHOR) ligaoxicn@126.com, Yang, Xin-Min2 (AUTHOR) xmyang@cqnu.edu.cn
Source:
Computational Optimization & Applications. Sep2025, Vol. 92 Issue 1, p179-214. 36p.
Database:
Business Source Elite

Weitere Informationen

In this paper, we consider a class of mathematical programs with inequality and equality constraints where the objective involves a cardinality penalty. The introduction of cardinality penalty can make the model automatically generate sparse solutions, but solving the cardinality objective nonlinear program is highly challenging since the objective function is discontinuous. We first give a continuous approximation and discuss its relationship with the original problem. Second, we propose a proximal augmented Lagrangian method for finding a weak directional(d)-stationary point of the continuous approximation. The proposed algorithm is a novel combination of the classical augmented Lagrangian method and proximal gradient algorithm. We prove that the proposed method globally converges to a weak d-stationary point of the continuous approximation, which is stronger than Clarke stationary point. Third, we demonstrate that the cardinality objective nonlinear program is a better model for the facility capacity expansion problem, which can generate key capacity expansion locations to avoid the high operating costs caused by expanding a large number of facilities. Finally, a systematic computational study on two capacity expansion problems is presented. The numerical results demonstrate the benefit of the cardinality objective nonlinear program and the effectiveness of the proposed algorithm. [ABSTRACT FROM AUTHOR]

Copyright of Computational Optimization & Applications is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)