Treffer: A Fast Temporal Decomposition Procedure for Long-Horizon Nonlinear Dynamic Programming.
Weitere Informationen
We propose a fast temporal decomposition procedure for solving long-horizon nonlinear dynamic programs. The core of the procedure is sequential quadratic programming (SQP) that utilizes a differentiable exact augmented Lagrangian as the merit function. Within each SQP iteration, we approximately solve the Newton system using an overlapping temporal decomposition strategy. We show that the approximate search direction is still a descent direction of the augmented Lagrangian provided the overlap size and penalty parameters are suitably chosen, which allows us to establish the global convergence. Moreover, we show that a unit step size is accepted locally for the approximate search direction and further establish a uniform, local linear convergence over stages. This local convergence rate matches the rate of the recent Schwarz scheme (Na et al. 2022). However, the Schwarz scheme has to solve nonlinear subproblems to optimality in each iteration, whereas we only perform a single Newton step instead. Numerical experiments validate our theories and demonstrate the superiority of our method. Funding: This work was supported by the National Science Foundation [Grant CNS-1545046] and the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research [Grant DE-AC02-06CH11347]. [ABSTRACT FROM AUTHOR]
Copyright of Mathematics of Operations Research (INFORMS) is the property of INFORMS: Institute for Operations Research & the Management Sciences and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Volltext ist im Gastzugang nicht verfügbar. Login für vollen Zugriff.