Treffer: py-irt: A Scalable Item Response Theory Library for Python.
Weitere Informationen
py-irt is a Python library for fitting Bayesian item response theory (IRT) models. At present, there is no Python package for fitting large-scale IRT models. py-irt estimates latent traits of subjects and items, making it appropriate for use in IRT tasks as well as in ideal point models. py-irt is built on top of the Pyro and PyTorch frameworks and uses GPU-accelerated training to scale to large data sets. It is the first Python package for large-scale IRT model fitting. py-irt is easy to use for practitioners and also allows for researchers to build and fit custom IRT models. py-irt is available as open-source software and can be installed from GitHub or the Python Package Index. History: Accepted by Ted Ralphs, Area Editor for software tools. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplementary Information [https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.1250] or is available from the IJOC GitHub software repository (https://github.com/INFORMSJoC) at [http://dx.doi.org/10.5281/zenodo.6818509]. [ABSTRACT FROM AUTHOR]
Copyright of INFORMS Journal on Computing is the property of INFORMS: Institute for Operations Research & the Management Sciences and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Volltext ist im Gastzugang nicht verfügbar. Login für vollen Zugriff.