Result: Prediction of software development faults in PL/SQL files using neural network models

Title:
Prediction of software development faults in PL/SQL files using neural network models
Authors:
Quah, Tong-Seng itsquah@ntu.edu.sg, Thet Thwin, Mie Mie1
Source:
Information & Software Technology. Jun2004, Vol. 46 Issue 8, p519. 5p.
Database:
Business Source Elite

Further Information

Database application constitutes one of the largest and most important software domains in the world. Some classes or modules in such applications are responsible for database operations. Structured Query Language (SQL) is used to communicate with database middleware in these classes or modules. It can be issued interactively or embedded in a host language. This paper aims to predict the software development faults in PL/SQL files using SQL metrics. Based on actual project defect data, the SQL metrics are empirically validated by analyzing their relationship with the probability of fault detection across PL/SQL files. SQL metrics were extracted from Oracle PL/SQL code of a warehouse management database application system. The faults were collected from the journal files that contain the documentation of all changes in source files. The result demonstrates that these measures may be useful in predicting the fault concerning with database accesses. In our study, General Regression Neural Network and Ward Neural Network are used to evaluate the capability of this set of SQL metrics in predicting the number of faults in database applications. [Copyright &y& Elsevier]

Copyright of Information & Software Technology is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)