Treffer: Online Regression for Data With Changepoints Using Gaussian Processes and Reusable Models.
Weitere Informationen
Many prediction, decision-making, and control architectures rely on online learned Gaussian process (GP) models. However, most existing GP regression algorithms assume a single generative model, leading to poor predictive performance when the data are nonstationary, i.e., generated from multiple switching processes. Furthermore, existing methods for GP regression over nonstationary data require significant computation, do not come with provable guarantees on correctness and speed, and many only work in batch settings, making them ill-suited for real-time prediction. We present an efficient online GP framework, GP-non-Bayesian clustering (GP-NBC), which addresses these computational and theoretical issues, allowing for real-time changepoint detection and regression using GPs. Our empirical results on two real-world data sets and two synthetic data set show that GP-NBC outperforms state-of-the-art methods for nonstationary regression in terms of both regression error and computation. For example, it outperforms Dirichlet process GP clustering with Gibbs sampling by 98% in computation time reduction while the mean absolute error is comparable. [ABSTRACT FROM PUBLISHER]
Copyright of IEEE Transactions on Neural Networks & Learning Systems is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)