Treffer: Real-Time Semiparametric Regression for Distributed Data Sets.
Weitere Informationen
This paper proposes a method for semiparametric regression analysis of large-scale data which are distributed over multiple hosts. This enables modeling of nonlinear relationships and both the batch approach, where analysis starts after all data have been collected, and the real-time setting are addressed. The methodology is extended to operate in evolving environments, where it can no longer be assumed that model parameters remain constant over time. Two areas of application for the methodology are presented: regression modeling when there are multiple data owners and regression modeling within the MapReduce framework. A website, <monospace>realtime-semiparametric-regression.net</monospace>, illustrates the use of the proposed method on United States domestic airline data in real-time. [ABSTRACT FROM AUTHOR]
Copyright of IEEE Transactions on Knowledge & Data Engineering is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)